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In this paper we discuss the importance of periodic minimal surfaces to the processes
of diffusion and confinement of interstitial charges within a charged lattice. It has
been suggested that the hyperbolic geometry of aluminosilicate networks in zeolites
can be understood within this context, since the aluminosilica species are confined
onto or close to these surfaces, owing to the field set up by the templating ions. This
model is applied to the ZSM-5 zeolite framework, where an orthorhombic periodic
minimal surface of genus 9 per unit cell can be traced in the aluminosilicate network.

Dedicated to Professor Sten Andersson on the occasion of his 60th birthday.

The observation of hyperbolic (saddle-shaped) surfaces in
the solid state by Sten Andersson (and, independently,
Alan Mackay), has spawned much fundamental research
into the application of these surfaces to the solid state.
Andersson’s original insight into a possible connection be-
tween minimal surfaces and crystalline structures came
about when he saw an image of the three-horned “monkey
saddle™, in Ref. 1. (Minimal surfaces are the simplest hy-
perbolic surfaces. Their mean curvature is identically zero,
so that they are equally concave and convex everywhere.)

Andersson and Filth had proposed earlier a simple ex-
planation of the large inorganic structure, zeolite N, which
they suggested was an intergrowth of fragments of the
smaller ZK5 and sodalite structures.” The hyperbolic form
of the monkey saddle seemed to describe perfectly the local
shape of the interface between these two sub-structures.
The global geometry of this interface fits well the D-sur-
face, which bisects space into two interpenetrating dia-
mond lattices.** This example remains a superb illustration
of the importance of these surfaces in atomic crystals. Sub-
sequently, it was found that many other structures can be
described by curved nets, which are folded onto, or close
to, periodic minimal surfaces.>*

Periodic minimal surfaces and the electronic field in
atomic crystals

In what sense can (or should) an atomic structure be under-
stood in terms of a hyperbolic surface? After all, we must
agree that a crystal is no more than a periodically varying
clectric field, described by a field vector at all points in
three-dimensional space. Along with Democritus, we may
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perhaps insist that the point singularities (zero-dimen-
sional) of this field (the atoms) are paramount. However,
most chemists would feel more comfortable with the addi-
tion of the concept of chemical bonds, which define the
extremal trajectories (on-dimensional) within the electric
field, linking atoms. We can also extract a (two-dimen-
sional) critical surface from the electric field, and invoke a
surface description of crystalline form. The hyperbolic ge-
ometry of this surface arises naturally, since we are describ-
ing extended framework structures, without bound in any
direction. The origins of the apparent vanishing mean cur-
vature of the atomic net, which is due to the underlying
minimal surface, are less easy to understand.

Calculations of the equipotential surfaces within charged
lattices by von Schnering and Nesper® have revealed the
presence of similar hyperbolic surfaces to those seen in
zeolites. Just as the mirror plane lying between a single
cation and an anion is the zero equipotential surface for the
charged pair, surfaces similar to periodic minimal surfaces
define the location of a “zero” of potential within interpen-
etrating cation and anion arrays, the surface lying halfway
between cation-anion pairs.” It can be demonstrated that if
the equipmential surface for a certain lattice (consisting of
cations and anions) is a minimal surface, that surface de-
fines the collection of open orbits for mobile ions diffusing
within a geometrically identical lattice built up of cations
(or anions) alone.® Thus, minimal surfaces arise as tangen-

" Although the average value of the mean curvature of these equi-
potential surfaces vanishes over a unit cell of the lattice, the
magnitude of the mean curvature fluctuates over the surface. The
coordinates of the equipotential surface can be expressed exactly
in terms of products of transcendental Jacobi 6-functions.’



tial field surfaces within chzrged lattices. Presumably, if the
equipotential surface approximates a periodic minimal sur-
face, as found in charged lattices interacting via the Cou-
lomb potential, the tangential field surface for the related
charge distribution is also similar to a periodic minimal
surface.

This link between hyperbolic surfaces and crystalline
arrays explains the observation that mobile ions in solid
electrolytes seem to move along these surfaces.® For exam-
ple, the classical solid electrolyte, a-Agl, consists of a mo-
bile cation distribution, with the anions frozen in a body-
centred cubic lattice. In this material, the silver ions are
expected to diffuse along tangential field surfaces created
by the b.c.c. array of iodine ions, which include the P- and
D-periodic minimal surfaces. Another solid electrolyte, B-
PbF,, exhibits high conductivity owing to the mobility of
the fluorine ions within the f.c.c. lead matrix. Here, the
T-surface describes the trajectories of the conducting spe-
cies well.*® It is tempting to suggest that these surfaces also
describe the locations of free electrons within metals,
where the cation lattice determines the geometry of the
surface.

Many open questions remain to be answered in this area.
For example, is there a unique equipotential surface for a
given value of the potential? After all, the magnitude of the
potential is ill-defined in an ideal lattice. Further, the con-
vergence of the infinite series describing the (Coulomb)
potential within the lattice is assured only for rapidly decay-
ing charge distributions about each site, so that the solution
may depend on the order of summation of the series.”!
The implications of such a multiplicity are wide. Do mul-
tiple solutions of distinct genus (a quantised topological
index) occur for this array? Unfortunately, standard calcu-
lation techniques (such as the Ewald procedure) necessarily
avoid this possible degeneracy of equipotentials, so that
answers to these questions are lacking.

Hyperbolic surfaces in ZSM-5 zeolites

Zeolites are routinely synthesised in the laboratory by dis-
solving aluminosilicate species in an aqueous solution of
cationic “templating ions”, such as tetra-alkylammonium
ions (plus, it seems, sodium).'" These ions have generally
been regarded as providing large sites around which the
proto-aluminosilicate species can crystallise, resulting in a
zeolite “cage” which encapsulates these ions. The cages are
linked by tunnels, forming the three-dimensional micropo-
rous crystalline array.

These ions create an electric field within the solution,
which is sensed by the silicate species. If it is assumed that
the templating ions remain locally ordered in solution, the
aluminosilicate net is expected to be (approximately) con-
fined to periodic minimal surfaces, since these are the
tangential field surfaces set up by the templating ions.'? In
this model of zeolite formation and resulting structure, the
distinction between tunnels and cages is artificial, since the
network can be viewed as a single-sheeted hyperbolic layer.

HYPERBOLIC SURFACES IN THE SOLID STATE

Fig. 1. Simplified topological view of the narrower tunnel
network surrounded by four-, five-, and six-membered rings in
the ZSM-5 structure. The hexagonal rings are normal to the
b-axis, and are skew in the actual structure. This labyrinth is
topologically equivalent to the wurtzite structure.

An important member of the zeolite family, ZSM-5, can
be synthesised in this fashion, using tetrapropyl ammonium
salts as the templating species. This zeolite can be made
with a variety of Si:Al ratios, ranging from the pure silicon
form, silicalite, to the ZSM-5 pentasils containing up to
eight Al atoms per unit cell, which comprises 96 T atoms."

The atomic structure of silicalite is complex, and dom-
inated by an orthorhombic network of the ten-membered
ring channels." The most natural surface description of this
structure is expected to invoke a surface containing tunnels
which match the interconnected straight tunnels parallel to
the b-axis, spanned by ten-membered rings. Since these
channels are linked by staggered ten-membered rings (nor-
mal to the b-axis), they must lie on the same side of the
surface (since they are not shielded from their neighbours
by a portion of the silicate network).

Close examination of a vertex model of the silicalite
nework reveals the presence of narrow convoluted tunnels
which separate these large ten-membered ring tunnels. The
former tunnels are made up of four-, five-, and six-mem-
bered rings joined four-by-four at their nodes, resulting in
an array which is topologically identical to the wurtzite
structure, albeit orthorhombically distorted. This network
consists of distorted skew hexagonal rings (lying roughly
normal to the [010] direction of the lattice, defined by the
large straight channels), with every alternate hexagonal
vertex joined via a short vertical tunnel to the next layer
above/below along the b-axis (Fig. 1). The nodes of this
network are defined by small polyhedra, consisting of six
skew pentagonal faces. A single embedded hyperbolic in-
terface can then be traced out within the T-atom network,
with all T-O-T bonds lying on the interface, with the
exception of four bonds in six-membered rings within each
orthorhombic unit cell. (These six-membered rings are in
the middle of a set of three edge-shared six-membered
rings, aligned parallel to the a-axis.) If a single atom is
removed from these rings (O-23 in the numbering system of
Olson et al.'%), extra tunnels of high elliptical eccentricity
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Fig. 2. A schematic picture of the topology of the larger tunnel
labyrinth within the ZSM-5 network. The lighter links denote the
flattened tunnels, while the darker tunnels correspond to those
enclosed by ten-membered rings. The a, b and c-axes of the
network are also shown.

are generated between ten-membered rings, so that every
node of this network contains two (10-membered ring)
tunnels running along the b-axis, two (10-membered ring)
tunnels in {101} directions and two smaller tunnels, along
the <001> direction (Fig. 2). The smaller tunnels are
threaded by severely flattened 10-membered rings.

The sixfold coordinated tunnel structure is topologically
equivalent to the smaller forefold coordinated tunnel laby-
rinth, since the two layrinths are “maximally interpene-
trating” in the sense of Wells:' every loop of one network
encloses a link of the other. This means that one labyrinth
can be continuously inflated, via the partitioning surface,
finally to enclose the other labyrinth. Thus, it is reasonable
to suppose that the dividing interface may adopt vanishing
mean curvature, forming a triply periodic minimal surface.

6-connected tunnels

4-cognected tunnels

Fig. 3. <010> projection of the T-atom framework in ZSM-5
zeolites. The two labyrinths enclosed by the partitioning
hyperbolic surface (on which the framework sits) are fourfold-
connected (similar to the D-surface) and sixfold-connected
(P-like). The open circles in the P-like labyrinth indicate the
straight tunnels down the b-axis. The thick and thin zig-zag lines
denote the larger (ten-membered ring) tunnels and the smaller
flattened tunnels. The D-like network contains short channels
running along the b-axis, with every second node in the skew,
distorted hexagonal rings linked to the parallel layer above/
below. Two parallel layers of both labyrinths occur per unit cell,
and the up/down and thick/thin nature of the labyrinths are
reversed in each successive layer.
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The topological description of this partitioning surface is
remarkably simple. On one side of the surface, the tunnel
network can be viewed as a distortion of the simple cubic
array tunnels of the P-surface, such that one pair of straight
tunnels adopts a zig-zag conformation. There are two
sets of staggered tunnels: <101>, <101> and <101>,
<101> related by the twofold axes of the space group,
both lying in [001] planes, separated by b/2. On the other
side of the atomic net, the tunnel network is an orthorhom-
bic distortion of the wurtzite network. The distorted P-
surface labyrinth consists of six tunnels meeting at a com-
mon node (Fig. 2), and the wurtzite labyrinth consists of
four tunnels meeting at a common vertex (Fig. 3). The
presence of two distinct tunnel diameters in the P-like
labyrinth results in a doubling of the unit cell dimensions
along the <100> and <010> directions relative to the
P-surface. Thus, a single unit cell of this surface (which
corresponds to a unit cell of the silicalite framework) con-
tains four P-like nodes (as well as eight wurtzite nodes).
The genus per unit cell of this hyperbolic surface is 9 (Euler
characteristic four times that of the P-surface).

This surface description of the ZSM-5 framework nat-
urally accounts for all of the 96 aluminium/silicon sites (the
T atoms) and 188 of the 192 O atoms within a unit cell of
the ZSM-5 family of pentasils. Thus the surface provides a
natural manifold for a hypothetical network containing 88
fourfold-coordinated T-atoms, and eight threefold-coordi-
nated T-atom sites, of composition TyO 4. If these eight
threefold-coordinated sites are occupied by aluminium
atoms, we have a natural explanation for the observed
maximum of eight aluminiums per unit cell.

This assumes that the aluminium atoms are all threefold-
coordinated, with an inherent barrier to the presence of the
more usual fourfold-coordinated sites within the alumino-
silicate framework. Note that the presence of threefold-
coordinated sites in the silicalite net is expected from the
surface description. (The most symmetric embedding of the
sodalite and faujasite frameworks within the P- or D-sur-
faces results in all sites being fourfold-coordinated.) Within
this picture, some features of the aluminium/silicon ex-
change behaviour of ZSM-5 can be explained. Experiments
indicate that freshly prepared ZSM-5 contains a fraction of
aluminium (up to eight atoms per unit cell).” Since the
freshly prepared zeolite is a product of the electric templat-
ing effect of the large cations, which means that the frame-
work is confined to the surface set up by the electric field of
these ions, some (threefold-coordinated) aluminium must
be present. However, these sites, which are neighbours to
the large straight channels, are very reactive, and liable to
be exchanged for silicon (since the pairs of adjacent alu-
miniums cannot be simply bridged by an oxygen ion to
satisfy their preferred coordination without violating Loe-
wenstein’s rule). Hence the dealuminium behaviour of
ZSM-5 upon steam treatment, and its ability to form a pure
silicate framework.



Conclusion

It appears that ZSM-5 can be simply described in terms of a
hyperbolic surface, consistent with the tangential field sur-
face created by templating ions during zeolite crystallisa-
tion. Within this picture, the framework geometry of
ZSM-5 is intermediate to those of the simpler zeolites,
sodalite and faujasite, containing both four- and six-con-
nected tunnel systems. The sodalite T-atom framework can
be described by the P-surface (six-connected), while that of
faujasite decorates the D-surface (four-connected).
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